Automorphisms of a polynomial ring which admit reductions of type I Shigeru Kuroda
نویسنده
چکیده
Recently, Shestakov-Umirbaev solved Nagata’s conjecture on an automorphism of a polynomial ring. To solve the conjecture, they defined notions called reductions of types I–IV for automorphisms of a polynomial ring. An automorphism admitting a reduction of type I was first found by Shestakov-Umirbaev. Using a computer, van den Essen–Makar-Limanov–Willems gave a family of such automorphisms. In this paper, we present a new construction of such automorphisms using locally nilpotent derivations. As a consequence, we discover that there exists an automorphism admitting a reduction of type I which satisfies some degree condition for each possible value.
منابع مشابه
A ug 2 00 7 Automorphisms of a polynomial ring which admit reductions of type I
Recently, Shestakov-Umirbaev solved Nagata’s conjecture on an automorphism of a polynomial ring. To solve the conjecture, they defined notions called reductions of types I–IV for automorphisms of a polynomial ring. An automorphism admitting a reduction of type I was first found by Shestakov-Umirbaev. Using a computer, van den Essen–Makar-Limanov–Willems gave a family of such automorphisms. In t...
متن کاملShestakov-Umirbaev reductions and Nagata’s conjecture on a polynomial automorphism
In 2003, Shestakov-Umirbaev solved Nagata’s conjecture on an automorphism of a polynomial ring. In the present paper, we reconstruct their theory by using the “generalized Shestakov-Umirbaev inequality”, which was recently given by the author. As a consequence, we obtain a more precise tameness criterion for polynomial automorphisms. In particular, we deduce that no tame automorphism of a polyn...
متن کاملWhen does the complement of the annihilating-ideal graph of a commutative ring admit a cut vertex?
The rings considered in this article are commutative with identity which admit at least two nonzero annihilating ideals. Let $R$ be a ring. Let $mathbb{A}(R)$ denote the set of all annihilating ideals of $R$ and let $mathbb{A}(R)^{*} = mathbb{A}(R)backslash {(0)}$. The annihilating-ideal graph of $R$, denoted by $mathbb{AG}(R)$ is an undirected simple graph whose vertex set is $mathbb{A}(R...
متن کاملA generalization of the Shestakov-Umirbaev inequality
in general. Here, deg f denotes the total degree of f for each f ∈ k[x]. ShestakovUmirbaev [6, Theorem 3] proved an inequality which describes the difference between deg Φ and deg Φ(g). Using this result, they settled in [7] an important open problem on automorphisms of k[x] as follows. Let σ : k[x] → k[x] be a homomorphism of k-algebras. Then, σ is an isomorphism if and only if k[σ(x1), . . . ...
متن کاملCastelnuovo-Mumford regularity of products of monomial ideals
Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
متن کامل